B.Sc. (Hons.) Mathematics

Category-I

DISCIPLINE SPECIFIC CORE COURSE - 4: LINEAR ALGEBRA

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course Code	Credits	Credit distribution of the course			Eligibility	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/ Practice	$\mathbf{0}$	XII pass with Mathematics
Linear Algebra	4	3	1	DSC-1		

Learning Objectives: The objective of the course is to introduce:

- The concept of vectors in \mathbb{R}^{n}, and their linear independence and dependence.
- Rank and nullity of linear transformations through matrices.
- Various applications of vectors in computer graphics and movements in plane.

Learning Outcomes: This course will enable the students to:

- Visualize the space \mathbb{R}^{n} in terms of vectors and their interrelation with matrices.
- Familiarize with basic concepts in vector spaces, linear independence and span of vectors over a field.
- Learn about the concept of basis and dimension of a vector space.
- Basic concepts of linear transformations, dimension theorem, matrix representation of a linear transformation with application to computer graphics.

SYLLABUS OF DSC-4

UNIT - I: Matrices and System of Linear Equations
(6 Weeks)
Fundamental operations with vectors in Euclidean space \mathbb{R}^{n}, Linear combinations of vectors, Dot product and their properties, Cauchy-Schwarz inequality, Triangle inequality, Solving linear systems using Gaussian elimination, Gauss-Jordan row reduction, Reduced row echelon form, Equivalent systems, Rank and row space, Eigenvalues, Eigenvectors, Eigenspace, Diagonalization, Characteristic polynomial of a matrix, Cayley-Hamilton theorem.

UNIT - II: Introduction to Vector Spaces

(4 Weeks)
Vector spaces, Subspaces, Algebra of subspaces, Linear combination of vectors, Linear span, Linear independence, Bases and dimension, Dimension of subspaces.

UNIT - III: Linear Transformations

Recommended Readings:

1. Andrilli, S., \& Hecker, D. (2016). Elementary Linear Algebra (5th ed.). Elsevier India.
2. Friedberg, Stephen H., Insel, Arnold J., \& Spence, Lawrence E. (2003). Linear Algebra (4th ed.). Prentice-Hall of India Pvt. Ltd. New Delhi.

Suggestive Readings:

i. Lay, David C., Lay, Steven R., \& McDonald, Judi J. (2016). Linear Algebra and its Applications (5th ed.). Pearson Education.
ii. Kolman, Bernard, \& Hill, David R. (2001). Introductory Linear Algebra with Applications (7th ed.). Pearson Education, Delhi. First Indian Reprint 2003.
iii. Hoffman, Kenneth, \& Kunze, Ray Alden (1978). Linear Algebra (2nd ed.). Prentice Hall of India Pvt. Limited. Delhi. Pearson Education India Reprint, 2015.

DISCIPLINE SPECIFIC CORE COURSE - 5: CALCULUS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title \& Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/ Practice		
Calculus	4	3	1	0	XII pass with Mathematics	DSC-2

Learning Objectives: The primary objective of this course is to introduce the basic tools of calculus, also known as 'science of variation', which provides a way of viewing and analyzing the real-world.

Learning Outcomes: This course will enable the students to understand:

- The notion of limits, continuity and uniform continuity of functions.
- Geometrical properties of continuous functions on closed and bounded intervals.
- Applications of derivative, relative extrema and mean value theorems.
- Higher order derivatives, Taylor's theorem, indeterminate forms and tracing of curves.

SYLLABUS OF DSC-5

UNIT - I: Limits and Continuity

Limits of functions ($\varepsilon-\delta$ and sequential approach), Algebra of limits, Squeeze theorem, One-sided limits, Infinite limits and limits at infinity; Continuous functions and its properties on closed and bounded intervals; Uniform continuity.

UNIT - II: Differentiability and Mean Value Theorems

(5 Weeks)
Differentiability of a real-valued function, Algebra of differentiable functions, Chain rule, Relative extrema, Interior extremum theorem, Rolle's theorem, Mean-value theorem and its applications, Intermediate value theorem for derivatives.

UNIT - III: Successive Differentiation, Taylor's Theorem and Tracing of Plane Curves (5 Weeks) Higher order derivatives and calculation of the $n^{\text {th }}$ derivative, Leibnitz's theorem; Taylor's theorem, Taylor's series expansions of $e^{x}, \sin x$, and $\cos x$; Indeterminate forms, L'Hôpital's rule; Concavity and inflexion points; Singular points, Asymptotes, Tracing graphs of rational functions and polar equations.

Recommended Readings:

1. Anton, Howard, Bivens, Irl, \& Davis, Stephen (2013). Calculus (10th ed.). John Wiley \& Sons Singapore Pvt. Ltd. Reprint (2016) by Wiley India Pvt. Ltd. Delhi.
2. Bartle, Robert G., \& Sherbert, Donald R. (2011). Introduction to Real Analysis (4th ed.). John Wiley \& Sons. Wiley India Edition 2015.
3. Prasad, Gorakh (2016). Differential Calculus (19th ed.). Pothishala Pvt. Ltd. Allahabad.
4. Ross, Kenneth A. (2013). Elementary Analysis: The Theory of Calculus (2nd ed.). Undergraduate Texts in Mathematics, Springer. Indian reprint.

Suggestive Readings:

i. Apostol, T. M. (2007). Calculus: One-Variable Calculus with an Introduction to Linear Algebra (2nd ed.). Vol. 1. Wiley India Pvt. Ltd.
ii. Ghorpade, Sudhir R. \& Limaye, B. V. (2006). A Course in Calculus and Real Analysis. Undergraduate Texts in Mathematics, Springer (SIE). Indian reprint.

DISCIPLINE SPECIFIC CORE COURSE - 6: ORDINARY DIFFERENTIAL EQUATIONS

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title \& Code	Credits	Credit distribution of the course			Eligibility criteria	Pre-requisite of the course (if any)
		Lecture	Tutorial	Practical/ Practice		
Ordinary Differential Equations	4	3	0	1 (2 Hours)	XII pass with Mathematics	NIL

Learning Objectives: The main objective of this course is to introduce the students to the exciting world of differential equations, their applications and mathematical modeling.

Learning Outcomes: The course will enable the students to:

- Learn basics of differential equations and compartmental models.
- Formulate differential equations for various mathematical models.
- Solve first order non-linear differential equations, linear differential equations of higher order and system of linear differential equations using various techniques.
- Apply these techniques to solve and analyze various mathematical models.

Concept of implicit, general and singular solutions for the first order ordinary differential equation; Bernoulli's equation, Exact equations, Integrating factors, Initial value problems, Reducible second order differential equations; Applications of first order differential equations to Newton's law of cooling, exponential growth and decay problems.

UNIT - II: Second and Higher-Order Differential Equations

General solution of homogenous equation of second order, Principle of superposition for a homogenous equation, Wronskian and its properties, Linear homogeneous and nonhomogeneous equations of higher order with constant coefficients, Method of variation of parameters, Method of undetermined coefficients, Two-point boundary value problems, Cauchy- Euler's equation, System of linear differential equations, Application of second order differential equation: Simple pendulum problem.

UNIT - III: Formulation and Analysis of Mathematical Models

Introduction to compartmental models, Lake pollution model; Density-dependent growth model, Interacting population models, Epidemic model of influenza and its analysis, Predator-prey model and its analysis, Equilibrium points, Interpretation of phase plane

Practical component- Practical / Lab work to be performed in a Computer Lab:
Modeling of the following problems using SageMath/Mathematica/MATLAB/Maple/Maxima /Scilab etc.

1. Solutions of first, second and third order differential equations.
2. Plotting of family of solutions of differential equations of first, second and third order.
3. Solution of differential equations using method of variation of parameters.
4. Growth and decay model (exponential case only).
5. Lake pollution model (with constant/seasonal flow and pollution concentration).
6. Density-dependent growth model.
7. Predatory-prey model (basic Volterra model, with density dependence, effect of DDT, two prey one predator).
8. Epidemic model of influenza (basic epidemic model, contagious for life, disease with carriers).

Recommended Readings:

1. Barnes, Belinda \& Fulford, Glenn R. (2015). Mathematical Modeling with Case Studies, Using Maple and MATLAB (3rd ed.). CRC Press. Taylor \& Francis Group.
2. Edwards, C. Henry, Penney, David E., \& Calvis, David T. (2015). Differential Equations and Boundary Value Problems: Computing and Modeling (5th ed.). Pearson Education.
3. Ross, Shepley L. (2014). Differential Equations (3rd ed.). Wiley India Pvt. Ltd.

Suggestive Reading:

i. Simmons, George F. (2017). Differential Equations with Applications and Historical Notes (3rd ed.). CRC Press. Taylor \& Francis Group.
Note: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.

